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Abstract

Studies have shown that there are many risk factor combinations for breast cancer. Fortunately, in recent

years, breast cancer survival rates have increased and number of deaths have decreased. Nevertheless, it

is important to explore the most significant breast cancer risk factors to identify at-risk groups for further

research. To do so, we used a dataset containing demographic and risk factors information, and survival

status by patients. After cleaning and exploring the data, we dropped highly correlated variables, combined

others, and performed transformations. We then built the full model, containing an interaction between

estrogen and progesterone status, and selected the best model using Akaike Information Criterion (AIC).

Overall, our final model had a good ROC-AUC and Brier score values, enabling it to effectively predict

likelihood of death in breast cancer patients.

Introduction

Breast cancer occurs due to abnormal cell growths in breast tissue. Although it is most often found in females,

1 out of every 100 diagnosed patients in the US is a male. Other breast cancer risk factors include increased

age, family history or personal history of breast cancer, radiation exposure, obesity, alcohol use, and more.

Research suggests that postmenopausal hormone therapy is a risk factor due the combination of estrogen and

progesterone used to treat signs and symptoms of menopause.

Additionally, the patient’s breast cancer stage is important to consider when determining the severity of the

cancer and how to treat it. The American Joint Committee on Cancer (AJCC) TNM system is the most

common, and contains clinical and pathologic systems. The pathologic stage (also known as the surgical

stage) is determined by examining the tissue removed during surgery, while the clinical stage is based on

results of a physical exam, biopsy, and imaging tests. Nevertheless, both systems are composed of the size of

the tumor, the spread to nearby lymph nodes and/or to distant sites, their estrogen and/or progesterone
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receptor status, the grade of the cancer, and if the cancer makes too much of HER2 protein.

Although breast cancer survival rates have increased and number of deaths have decreased recently, it

is important to explore the risk factors of breast cancer. Understanding these risk factors allow for the

identification of still high-risk patient populations and the tailoring of cancer treatment to the patient in the

changing paradigm of personalized medicine. For this project, we will investigate the odds of breast cancer

survival given most of the risk factors previously mentioned.

Methods

Data source We obtained a deidentified set containing data on 4024 breast cancer patients. this dataset

contains both demographic information, such as patient age, race, and marital status; clinical information

such as tumor stage, tumor size, cancer hormone receptor status (progesterone and estrogen), regional node

positive, and regional node examined; and outcome information: the number of months the patient had

survived prior to study conclusion, and their alive/dead status at the end of the study.

Data cleaning We combined the regional node positive and regional node examined variables into a

“regional node proportion positive” variable. This variable, but neither the node positive nor node examined

variables were in the model. Further, we decided to discard the T stage and N stage variables, as they captured

information already contained in the AJCC 6th stage variable. We also excluded the grade variable, as it

captured the same clinical information as the differentiate variable. Due to the skewness in the distribution of

the tumor size, we applied a square root transformation to that variable (Supplemental Figure 1). We also

added a main_stage variable, which groups all the stages in 6th_stage, i.e. that “IIIA” and “IIIC” are under

factor level “III”, and added an indicator variable that tells us if the patient is “White” or not, essentially

grouping “Black” and “Other” together. Both variables were created in case the reduction of factor levels

makes the fit better.

Model construction We decided to use logistic regression model to estimate the risk of patient death

within the followup window. Formally, we assumed that for an individual with probability p to die after

receiving a breast cancer diagnosis, the log-odds of p was linear, i.e. logit(p) = Xβ + ϵ, where X is the n x p

design matrix, and β and ϵ are vectors in Rp.

In addition to the covariates, we included the interaction between estrogen status and progesterone status

given that we found in our background research that having both “positive” increase the chances of breast

cancer.
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Model selection We used a criterion-based method, utilizing Akaike Information Criterion (AIC) to assess

the performance of our models.

Model validation We performed 10-fold cross-validation to assess the performance of our model. Each

observation in a dataset will be in 1 of 10 folds such that it gets used as training data 9 times, and as test

data once. Because this dataset has over 4,000 subjects, each test set will include approximatley 400 subjects.

The predictions are then saved such that each row has an out-of-sample prediction that can be compared to

the real value.

Results

Exploratory Data Analysis Table 1 shows summary statistics for demographic variables, along with

some variables related to breast cancer. They are split by whether they survived or not, with the first column

being the summary statistics for the entire dataset. We noticed that although individuals had similar ages

despite their status, Black individuals and widows died at a disproportional rate. Those that died also had

higher root_tumor_size and regional_prop, which are variables related to cancer where higher values are

more alarming. Summary statistics for all variables can be found in Supplemental Table 1.

Table 1. Baseline characteristics

Characteristic Overall, N = 4,024 Alive, N = 3,408 Dead, N = 616

age 54 (9) 54 (9) 55 (10)

race

White 3,413 / 4,024 (85%) 2,903 / 3,408 (85%) 510 / 616 (83%)

Black 291 / 4,024 (7.2%) 218 / 3,408 (6.4%) 73 / 616 (12%)

Other 320 / 4,024 (8.0%) 287 / 3,408 (8.4%) 33 / 616 (5.4%)

marital_status

Married 2,643 / 4,024 (66%) 2,285 / 3,408 (67%) 358 / 616 (58%)

Divorced 486 / 4,024 (12%) 396 / 3,408 (12%) 90 / 616 (15%)

Single 615 / 4,024 (15%) 511 / 3,408 (15%) 104 / 616 (17%)

Widowed 235 / 4,024 (5.8%) 186 / 3,408 (5.5%) 49 / 616 (8.0%)

Separated 45 / 4,024 (1.1%) 30 / 3,408 (0.9%) 15 / 616 (2.4%)

root_tumor_size 5.24 (1.73) 5.14 (1.69) 5.81 (1.85)

regional_prop 0.33 (0.29) 0.30 (0.27) 0.49 (0.33)
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Model construction and selection We used a logistic model coupled with criterion-based stepwise

regression to determine which variables were useful in predicting the risk of death in breast cancer patients.

The variables that were identified as important were age, race, marital status, AJCC 6th stage, differentiate,

estrogen status, progesterone status, tumor size, and regional node positive proportion. Some variables that

were not identified as important by the model were whether the tumor was Stage A and the interaction

between estrogen and progesterone status. For a list of model coefficients see Supplemental Table 2.

Diagnostics We constructed a receiver operating characteristic curve (ROC) for our model on in-sample

data, and used the area under the curve (AUC) to measure the model’s discriminatory capability. This

approach compares the model’s specificity and sensitivity to get a score bounded by 0 and 1, where 1 is best.

This model’s ROC-AUC is 0.754.
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Figure 1. Receiver operating characteristic curve for the optimal logistic regression model.

We calculated Brier scores to assess the optimal model’s performance. The Brier score measures the accuracy

of probabilistic predictions, where a score of 0 indicates perfect accuracy. The optimal model’s Brier score

was 0.112. This suggests that our final model has good probabilistic prediction accuracy.

To further assess the performance of our model, we constructed a separation plot, a graphical method for

determining concordant and discordant predictions (Figure 2). This separation plot shows that the model is

able to reasonably effectively distinguish the patients that survived from those that died, though the low value

of the predicted probability across the sample shows that it gives low probabilities of dying to all subjects.
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Figure 2. Separation plot of model. Values are stripes, arranged in increasing predicted probability of death.

The stripes are colored yellow if the patient survived, and red if they died. The black line indicates the

predicted probability of death.

Model validation This table shows the confusion matrix made from our 10 fold cross-validation, such

that the predicted values are out-of-sample predictors. Note that cells 1 and 4 (if read from left to right, and

top-down) are individuals for which their status prediction was correctly predicted, and cells 2 and 3 are

individuals for which their status wasn’t correctly predicted.

Table 1. Confusion matrix of the model

Predicted Died Predicted Survived

Actually Died 3359 49

Actually Survived 536 80

Model performance by race Lastly, model performance by race was explored using ROC AUC and Brier

score values. The values by race are presented in Table 2. The highest AUC was obtained for white patients,

while the lowest Brier score was obtained for the Other racial group. Separation plots were also constructed

stratified on racial groups (Figure S2). These plots showed good performance for White subjects, but poorer

performance for subjects of Black and Other race.

Table 2. Model performance by race

race roc_auc brier_score

White 0.760 0.109

Black 0.704 0.171

Other 0.650 0.088
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Discussion

We constructed a model to predict the survival of breast cancer patients, and optimized it using a criterion

based-selection approach. Most of the covariates in the dataset were identified by AIC as being useful

predictors, with the exception of Stage A. Despite the combination of progesterone (PR+) and estrogen

(ER+) receptors in breast cancer being of note clinically, our model did not find the interaction term between

these variables to be worth including. This suggests that the odds ratio for risk of death in ER+ patients

with PR+ is not significantly different from those who are PR-, and vice versa.

The most significant predictor of death was the regional node positive proportion variable; an individual with

100% positive regional nodes has 3.5 times the odds of death (CI: 2.4, 5.0) compared with an individual who

had no positive regional nodes. Other highly significant predictors were cancer stage (specifically whether the

patient was IIIC), whether the tumor was well differentiated (i.e. healthy cells), hormone receptors on the

tumor (ER+ and PR+), and age.

Our model was effective at classifying patients who survived, but was less effective at classifying patients who

died when using a p̂ = 0.5 as the cutoff. The separation plot we constructed suggests that a lower cutoff,

such as 0.35 may be more appropriate, and that further tuning may improve model performance.

Conflicting conclusions occurred while assessing model performance by race. According to the ROC AUC

values, the model performed better for White patients, then Black patients, then ‘Other’ race patients.

However, the Brier scores by race suggests that the model most accurately predicted probabilities for ‘Other’

race patients, followed by White and Black patients. None of these scores were alarming to the extent we

thought the model had horrible performance on one of the race groups, but any possible improvements would

likely require more data or a more flexible model.

From our cross-validation confusion matrix, we can see that the model is very good at correctly predicting

that somebody survived, and rarely predicts the individual died when it didn’t. However, the model makes a

lot of errors when trying to predict if the individual survived: more than 90% of the total error happens

when the model predicts the individual died, and it actually survived. This reflects the fact that the model

prefers to predict 0 as a result of the status variable being 0 inflated.

Overall, our model provides useful insight into the risk factors for death in breast cancer patients. Future

research may expand this project even further by using a dataset with more non-white participants, thus

improving prediction across racial strata. Other models, like random forest, could lead to prediction accuracy

improvement. This further exploration is important to improving equity in healthcare outcomes, and is in

line with our goal of identifying vulnerable patient subgroups for further research.
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Supplemental Information

Table S1. Summary Statistics for all variables

Characteristic Overall, N = 4,024 Alive, N = 3,408 Dead, N = 616

age 54 (9) 54 (9) 55 (10)

race

White 3,413 / 4,024 (85%) 2,903 / 3,408 (85%) 510 / 616 (83%)

Black 291 / 4,024 (7.2%) 218 / 3,408 (6.4%) 73 / 616 (12%)

Other 320 / 4,024 (8.0%) 287 / 3,408 (8.4%) 33 / 616 (5.4%)

marital_status

Married 2,643 / 4,024 (66%) 2,285 / 3,408 (67%) 358 / 616 (58%)

Divorced 486 / 4,024 (12%) 396 / 3,408 (12%) 90 / 616 (15%)

Single 615 / 4,024 (15%) 511 / 3,408 (15%) 104 / 616 (17%)

Widowed 235 / 4,024 (5.8%) 186 / 3,408 (5.5%) 49 / 616 (8.0%)

Separated 45 / 4,024 (1.1%) 30 / 3,408 (0.9%) 15 / 616 (2.4%)

x6th_stage

IIA 1,305 / 4,024 (32%) 1,209 / 3,408 (35%) 96 / 616 (16%)

IIIA 1,050 / 4,024 (26%) 866 / 3,408 (25%) 184 / 616 (30%)

IIIC 472 / 4,024 (12%) 291 / 3,408 (8.5%) 181 / 616 (29%)

IIB 1,130 / 4,024 (28%) 995 / 3,408 (29%) 135 / 616 (22%)

IIIB 67 / 4,024 (1.7%) 47 / 3,408 (1.4%) 20 / 616 (3.2%)

differentiate

Poorly differentiated 1,111 / 4,024 (28%) 848 / 3,408 (25%) 263 / 616 (43%)

Moderately differentiated 2,351 / 4,024 (58%) 2,046 / 3,408 (60%) 305 / 616 (50%)

Well differentiated 543 / 4,024 (13%) 504 / 3,408 (15%) 39 / 616 (6.3%)

Undifferentiated 19 / 4,024 (0.5%) 10 / 3,408 (0.3%) 9 / 616 (1.5%)

a_stage

Regional 3,932 / 4,024 (98%) 3,351 / 3,408 (98%) 581 / 616 (94%)

Distant 92 / 4,024 (2.3%) 57 / 3,408 (1.7%) 35 / 616 (5.7%)

estrogen_status

Positive 3,755 / 4,024 (93%) 3,247 / 3,408 (95%) 508 / 616 (82%)

Negative 269 / 4,024 (6.7%) 161 / 3,408 (4.7%) 108 / 616 (18%)
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Characteristic Overall, N = 4,024 Alive, N = 3,408 Dead, N = 616

progesterone_status

Positive 3,326 / 4,024 (83%) 2,914 / 3,408 (86%) 412 / 616 (67%)

Negative 698 / 4,024 (17%) 494 / 3,408 (14%) 204 / 616 (33%)

root_tumor_size 5.24 (1.73) 5.14 (1.69) 5.81 (1.85)

regional_prop 0.33 (0.29) 0.30 (0.27) 0.49 (0.33)

main_stage

II 2,435 / 4,024 (61%) 2,204 / 3,408 (65%) 231 / 616 (38%)

III 1,589 / 4,024 (39%) 1,204 / 3,408 (35%) 385 / 616 (63%)

white

POC 611 / 4,024 (15%) 505 / 3,408 (15%) 106 / 616 (17%)

White 3,413 / 4,024 (85%) 2,903 / 3,408 (85%) 510 / 616 (83%)
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Table S2. Model Coefficients

term estimate std.error adjusted_odds_ratio p.value statistic

age 0.023 0.006 1.02 (1.01, 1.03) 0.000 4.180

raceBlack 0.506 0.162 1.66 (1.21, 2.28) 0.002 3.129

raceOther -0.431 0.202 0.65 (0.44, 0.97) 0.033 -2.132

marital_statusDivorced 0.222 0.141 1.25 (0.95, 1.65) 0.115 1.575

marital_statusSingle 0.153 0.134 1.17 (0.9, 1.52) 0.252 1.146

marital_statusWidowed 0.225 0.192 1.25 (0.86, 1.83) 0.242 1.171

marital_statusSeparated 0.847 0.366 2.33 (1.14, 4.78) 0.021 2.316

x6th_stageIIIA 0.563 0.163 1.76 (1.28, 2.42) 0.001 3.460

x6th_stageIIIC 1.064 0.193 2.9 (1.98, 4.23) 0.000 5.505

x6th_stageIIB 0.413 0.154 1.51 (1.12, 2.05) 0.007 2.676

x6th_stageIIIB 1.141 0.322 3.13 (1.67, 5.88) 0.000 3.546

differentiateModerately differentiated -0.389 0.104 0.68 (0.55, 0.83) 0.000 -3.726

differentiateWell differentiated -0.919 0.192 0.4 (0.27, 0.58) 0.000 -4.776

differentiateUndifferentiated 0.961 0.529 2.61 (0.93, 7.37) 0.069 1.816

estrogen_statusNegative 0.738 0.177 2.09 (1.48, 2.96) 0.000 4.169

progesterone_statusNegative 0.571 0.127 1.77 (1.38, 2.27) 0.000 4.485

root_tumor_size 0.048 0.031 1.05 (0.99, 1.12) 0.128 1.523

regional_prop 1.237 0.185 3.45 (2.4, 4.95) 0.000 6.686
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Supplemental figures
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Figure S1. Transformation of tumor size variable. (A) Before transformation. (B) After square root

transformation.
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Figure S2. Separation plots by race. Values are stripes, arranged in increasing predicted probability of

death in (A) White, (B) Black, and (C) Other race patients. The stripes are colored yellow if the patient

survived, and red if they died. The black line indicates the predicted probability of death.
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